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Problem Statement

Addressing the uncertainties in cab pricing, availability,
and traffic-related delays to enhance users' overall
transportation experience



Predictive Pricing
Model

Predicting minimum cab ride
prices based on routes and
times for cost-effective
traveler choices

Cab Availability
Forecasting

Estimating cab waiting times
to reduce uncertainty and
enhance user convenience

Traffic Condition
Prediction

Forecasting traffic
congestion to aid efficient
travel planning and reduce

delays



Potential Applications and

Impact
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Would enhance convenience
and cost-efficiency for cab
users, leading to increased

customer satisfaction
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Smaxt Traffic
Prediction

Traffic prediction data can
aid in time efficient time
experience.



Literature Review

variables

passenger_count
fare_amount
pickup_ datetime
pickup_ longitude
pickup latitude

dropoff longitude

dropoff_latitude

Method AcCcuracy [In

Percentage)

Handom Forest 79 7RG4

Linear Regression I /18255

Fig 9. Accuracy

Real_timepredictionof Cab Fair using Machine Learning

(Dr.A.Pravin et al.]

The company uses historical data and machine-learning
models combined to predict ETA.

It uses two layered neural network to predict ETA.
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Figure 6: One interaction layer

DeeprETA: An ETA Post-processing System at Scale
(Uber TechnologiesInc.)



https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9752315&tag=1
https://arxiv.org/pdf/2206.02127.pdf

Scraping the
Web
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Cab_Type Cab_Price Arrival_Time Pick_Up Destination Current Time Current Day
330818 UberXLPerson1 3232.09 7 mins away-20:18 Plaksha University Sector 82 03/10/2023, 20:01:04 Tuesday
188085 UberxXLPerson1 2609.93 9 mins away-21:02 Plaksha University Railway Station Chandigarh (Panchkula Side) 20/09/2023, 20:13:49 Wednesday
44997 PremierPersoni 2202.01 Unavailable Plaksha University Chandigarh Airport Departure Terminal (IXC)  12/09/2023, 0:17:05 Tuesday
218293 UberGoPerson1 3174.22 5 mins away+15:07 Sector 82 Plaksha University 22/09/2023, 14:52:05 Friday
231396 PremierPerson1 ¥316.27 8 mins away-7:06 Plaksha University Railway Station Chandigarh (Panchkula Side) 23/09/2023, 06:28:19 Saturday
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| el'S talk Data

We have collected a total of 3,75,348 datapoints across 7 attributes

Attributes

Cab_Type
Cab_Price
Arrival Time
Pick Up
Destination

Current Time
Current Day

dtype: object

object
object
object
object
object
object
object

50060

Elante Mall ™

51435~~_ . Plaksha
~ University

Sector 82
Chandigarh Railwary Station

Chandigarh Airport



Raw Data

Preprocessed Data

Data Preprocessing

Cab_Type Cab_Price Arrival_Time Pick_Up Destination Current Time Current Day
0 Hatchbacks 3280.96 2 mins away+-21:16 drop-off Elante Mall Plaksha University 09/09/2023, 20:39:04 Saturday
1 SUvV ¥473.86 3 mins away+-21:16 drop-off Elante Mall Plaksha University 09/09/2023, 20:39:04 Saturday
2 Auto 2225.62 4 mins away-21:16 drop-off Elante Mall Plaksha University 09/09/2023, 20:39:04 Saturday
3 Bike 2156.81 2 mins away-21:15 drop-off Elante Mall Plaksha University 09/09/2023, 20:39:04 Saturday
4 Sedan ¥319.02 7 mins away+21:17 drop-off Elante Mall Plaksha University 09/09/2023, 20:39:04 Saturday

Cab_Type Cab_Price Pick_Up Destination Curr;;; Cab_Arrival_Time Cab_Destination_Time Current_Date Current_Time Availability Route_Time
0 Hatchbacks 280.96 E'ﬂ;ﬁ Ur'::f'ﬂ"‘fﬁ';‘é Saturday 2 mins away 21:16  09/09/2023 20:39 1 37.0
1 SUV 473.86 E'ﬂ;ﬁ UEL?E"‘FSSE Saturday 3 mins away 21:16  09/09/2023 20:39 1 37.0
2 Auto 225.62 E'ﬂ;ﬁ UFFI:E'E"‘FSS'E Saturday 4 mins away 21:16  09/09/2023 20:39 1 37.0
3 Bike 156.81 E'ﬂ‘;ﬁ UEL?E"‘FSSE Saturday 2 mins away 21:15  09/09/2023 20:39 1 36.0
4 Sedan 319.02 E'ﬂ;ﬁ Ur'::f'ﬂ"‘fﬁ';‘é Saturday 7 mins away 21:17  09/09/2023 20:39 1 38.0



Cab Avallability

Availability of All Types of Cabs
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B Available
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Availability of Cabs from Plaksha University to Elante Mall
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Cab Price Distribution

Frequency
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Hourly Cab Price

Plaksha to Elante Cab Price
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ML Methodology

Cab Price Prediction

Linear Regression

Linear Regression is ideal for
predicting cab prices when the
connection between factors like
distance, time, and traffic
conditions and the fare is
roughly linear. Its interpretability
provides insights into how
individual features impact the
predicted fare.

Random Forest
Regressor

For cab fare prediction with
intricate, potentially non-linear
relationships among factors,
Random Forest Regressor excels
at capturing complex
dependencies.

K-Nearest Neighbozxs

K-Nearest Neighbors is valuable
for cab price prediction when
there are local pricing patterns,
such as neighborhood-specific or
time-dependent variations. KNN
effectively captures these
patterns, adapting to location
proximity or temporal factors.



Performance MetriCS

Cab Price Prediction

CV Mean Std R2 Score

Linear Regression 3797.716902 162524465 0.784966

Average CV Mean Accuracy Random Forest 656601318 33316359 0.962803

KNN 2173.335933 52001714 0.876900

KNN

Average R2 Score
Random Forest

KNN

Linear Regression
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ML Methodology

Route Time Prediction

Linear Regression

Linear Regression is a
suitable choice for predicting
route time when input features,
such as distance, traffic
conditions, and time of day,
exhibit a linear relationship.

Random Forest
Regressor

Similar to cab fare
prediction, Random Forest
Regressor is advantageous for
route time prediction when
intricate, non-linear
relationships exist between
input features and route
duration.

K-Nearest Neighbozxs

K Nearest Neighbors is useful
when predicting route time,
especially in scenarios where the
travel time varies based on local
patterns.



Performance MetriCS

Route Time Prediction O G Std R2 Score

Linear Regression 14.913452 0.113069 0.893972

Average CV Mean Accuracy

Random Forest 1.251514 0.026682 0.991102

KNN- KNN 4.022650 0.113075 0.971400
Average R2 Score

Random Forestl
KNN_
- Regression_
Random Forest
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CV Mean
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ML Modeling Obstacles
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Pexrsistent Web
Scraping

A laptop was relentlessly
employed in the continuous
extraction of data from the

internet through web scraping
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Limited Storage
Capacity

We continuously created new
Google Sheets after reaching the
250,000-row limit in each, to
accommodate our extensive data
storage needs

Time Intensive
Processing

Training our machine learning
model proved to be a time-
consuming task, particularly due
to the substantial size of our
dataset



Deployment Hurdles

Deploy

Data Volume and
Management:

Handling larger volumes of data
effectively, including storage and
processing, becomes more

complex as the scale grows.

Real-Time Data
Processing:

AS WOl service scales,
the need for real-time
data orocessing
increases, which can be
technically demanding.

Changing Data
Paltlerns:

Uver time, patterns in
cab usage, pricing, and
raffic conditions may
change, requiring
continuous upaates 10
the model to maintain
Acouracy.



Thank you!
GOL questions?
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